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A systematic method for developing high-order, zero-temperature perturbation 
expansions for quantum many-body systems is presented. The models discussed 
explicitly are spin models with a variety of interactions, in one and two dimen- 
sions. The wide applicability of the method is illustrated by expansions around 
Hamiltonians with ordered and disordered ground states, namely Ising and 
dimerized models. Computer implementation of this method is discussed in 
great detail. Some previously unpublished series are tabulated. 
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1. I N T R O D U C T I O N  

At zero temperature, quantum many-body systems can show very rich and 
complex behavior as parameters in the Hamiltonian are varied. Such T=  0 
phase transitions occur even in simple spin models which possess trivial 
classical ground states. Interest in the T= 0 properties of various quantum 
spin system has grown tremendously in the past few years, due to 
several striking developments. Some theories of high-temperature super- 
conductivity have focused attention on two-dimensional systems, par- 
ticularly the square lattice, spin-I/2, Heisenberg antiferromagnet/~) The 
venerable subject of antiferromagnetic Heisenberg spin chains was rein- 
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vigorated by Haldane's conjecture (2~ that, at T =  0, integer and half-integer 
spin chains should have dramatically different properties. Moreover, 
remarkable developments in two-dimensional field theory, (3) in conjunction 
with the well-known correspondence between d-dimensional quantum 
systems at T =  0 and (d+  1)-dimensional classical systems (see, e.g., ref. 4), 
has directed further attention to one-dimensional quantum spin models. (5) 

A host of methods have been applied in studies of quantum spin 
systems. Several classes of "exactly solvable" models have been discovered. 5 
Exact (and quasiexact stochastic) calculations of the spectrum and 
eigenstates for finite systems, followed by extrapolation to the ther- 
modynamic limit, have been carried out for many models in 1D, 6 and for 
several 2D models as well (see, e.g., refs. 1 t). Also noteworthy are varia- 
tional studies, particularly in 2D, (12) mappings of 1D models to field 
theories (ref. 13, among many others), and real-space renormalization. (14) 

In this paper, we describe a method for generating high-order pertur- 
bative (power series) expansions for many properties of a wide class of 
quantum spin systems. Such expansions, when analyzed by methods 
developed for the study of classical critical phenomena, (15) lead to results 
which would be difficult to obtain by other means. Interpretation of the 
series is best treated in the context of specific problems, and is reserved for 
separate publications(~6-23); however, many of the series are tabulated in 
the Appendix of this paper. Although we treat only spin models here, the 
technique readily generalizes to quantum lattice gases with either Fermi or 
Bose statistics. 

Perturbative expansions for quantum spin systems have appeared 
sporadically in the literature of the past 30 years] Generally, a different 
technique was invented for each problem, and laborious calculations by 
hand led to short series for one or two properties. This is not to say that 
such work was without value. For example, Pfeuty and Elliott's studies of 
the transverse-field Ising model (25) motivated Suzuki's exact mapping 
between that model and the classical Ising model in one dimension 
higher. (26) The more recent work by Kadanoff and collaborators (27) also 
deserves mention. However, we feel that the potential of series expansions 
for revealing novel phase diagrams and critical behavior in quantum spin 
systems has not been fully exploited. 

In contrast with previous work, our method permits expansions of 
qualitatively different character--both "ordered-state" and "disordered- 

Models solvable by the Bethe-ansatz are discussed in refs. 6-8; other types of exactly 
solvable models are described in refs. 9. 

6 Ref. 10 is one of the pioneering works in that field; a complete bibliography is beyond the 
scope of this paper. 

7 Besides the other series work mentioned later, see also refs. 24. 
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state" expansions, as described below--to be treated within the same 
framework. Moreover, the technique is readily implemented on a computer 
in such a way that one can generate a host of different expansions without 
major modifications in the code. The method may be characterized as a 
connected cluster expansion, and indeed much of the formalism is identical 
to that of classical cluster expansions. (28) Naturally, there are also impor- 
tant differences between the classical and quantum cases. We defer further 
discussion of the technique itself to Section 2, and in the remainder of this 
section we focus, instead, on the specific applications where the technique 
has proven its worth. 

The models we will consider in this paper consist of quantum spins 
(with S = 1/2 or 1) which sit on regular one- or two-dimensional bipartite 
lattices s (linear chain, square, or honeycomb) and interact via nearest 
neighbor couplings. [Models with further neighbor couplings have also 
been studied; see Section 4.5. The most general coupling we have studied 
may be expressed as 

~tj[(Si, Sj) A --]~(Si, Sj)23 (1.l) 

where A governs exchange anisotropy, via 

(Si, Sj)~ = S;S; + A(S~S 2 + S?S/) (1.2) 

The coefficient ~ allows for bond alternation with respect to some fixed, 
nearest neighbor dimer configuration @ (i.e., a set of nearest neighbor pairs 
selected so that any spin lies in exactly one of the pairs), via 

~ =  (1.3) 
otherwise 

The particular dimerizations we have employed are displayed in Fig. 1, 
namely, the unique nearest neighbor dimerization for chains, two dimeriza- 
tions, which we denote as "columnar" and "staggered," on the square 
lattice, and a "columnar" dimerization on the honeycomb lattice. 

In this wide class of models, there are two distinct sets of 
Hamiltonians which are trivially solvable, and which may serve as 
"unperturbed Hamiltonians" about which one can expand. 

(i) "Dimer models," defined by 2 = 0, consist of disconnected dimers. 
For  sufficiently large fl (e.g., greater than -1 /3  for S =  A = 1) and A # 0, 
each individual dimer possesses a unique ground state and a readily 

s Studies of models where the classical ground states are noncollinear, such as the triangular 
lattice antiferromagnet, require special attention and will not be discussed here. See ref. 20. 
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Fig. 1. Dimer configurations on the chain, square lattice, and honeycomb lattice, used to 
define "unperturbed" Hamiltonians. 

calculable spectrum of (2S + 1) 2 -  1 excited states. The eigenstates of the 
entire system are simply characterized as products of the individual dimer 
states, and the corresponding eigenvalues are the sums of the dimer 
energies. We denote expansions in the variable ,~ about dimer models by 
"D-expansions." 

(ii) "Ising models," defined by 4 = 0, are completely classical, in that 
any state which is a product of local S z eigenstates is itself an eigenstate. 
On bipartite lattices, for ,~ > 0 and fl > -1IS 2, there are two ground states, 
namely, the "N6el states," in which all spins on one sublattice have 
SZ= - S  and all spins on the other have SZ= -S.  Expansions in 3 about 
Ising models will be referred to as "I-expansions." 

Studies of zero-temperature properties of quantum spin systems by 
series expansions can be broadly classified into two types: disordered- 
and ordered-state expansions. The D-expansions lie in the former class. 
The defining characteristic of a disordered-state expansion is that the 
unperturbed Hamiltonian ~o has a unique ground state. Such expansions 
are, in many respects, analogous to classical high-temperature expansions. 
For example, continuous phase transitions are marked by the divergence of 
an appropriate susceptibility. For concreteness, consider the D-expansions 
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in the manifold of isotropic coupling (A = 1), and write the Hamiltonian as 
YF = ~0 + 2Ytq~. The ground state of an isolated dimer is a spin singlet, and 
so is the ground state of oVfo, since it is simply a product over singlets on 
dimerized neighbors. The part ~ then couples the dimers together, but 
since ~ is rotationally invariant in spin space, the ground state remains in 
the singlet subspace and has no staggered magnetization to all orders 
of perturbation theory. Nonetheless, the spontaneous development of 
antiferromagnetic (AF) order at some 2c > 0 may be evident in expansions 
for various quantities for which series expansions may be generated; we 
describe these quantities in detail here. 

(a) The "correlation sum," or, more precisely, the AF, equal-time 
structure factor, is defined by 

kto= lim N - ~ n i j ( S ; . S j ) =  lim ~ n o g ( S o ' S ; )  (1.4) 
N ~ ~ i j  N ~ oo  i 

Here and below, angular brackets denote ground-state expectation values, 
and N is the number of spins in the system. The parity n 0. takes on value 
__+ 1, depending on whether or not spin i lies in the same sublattice as spin 
j. It is important to recognize that the expansions for #o, and all other 
quantities described below, apply to the infinite system. Accordingly, the 
N ~ oc limit will be implicit in the definitions which follow. 

(b) The second moment of the correlation function is given by 

#2 = N - I Z  nor~(Si "S j) = Z noiro2i(So "Si) (1.5) 
ty i 

where r o. is the Euclidean distance between spin i and spin j. An AF 
correlation length ~ may be defined by 

~2 = kt2/#o (1.6) 

In doing so, one makes the tacit, and generally valid, assumption that 
(Se 'S j )  decays exponentially at large r o. (modulo algebraic prefactors). 
One should note that a series for ~2 cannot be produced directly by our 
method, but can only be obtained by division of the series for the quan- 
tities employed in the definition. 

(c) The ground-state energy 

Eg= N - l  ( g f  ) (1.7) 

will certainly not diverge on approach to a critical point, but should, in 
general, exhibit a weak singularity there. As we shall see in Section 2, one 



1098 Gelfand et  at. 

must necessarily generate the expansion for Eg in the course of calculating 
expansions for any other quantities, so ground-state energy series exist for 
every model we have studied, whether or not the series are useful. 

(d) The AF susceptibility Z is defined in terms of the response to a 
symmetry-breaking staggered field H* via 

82Eg (1.8) 
Z= (SHt) 2 w=o 

At finite-temperature criticality, the divergences of X and/~o are governed 
by the same exponent; indeed, for classical systems )~ = #fiT, where T is the 
temperature. [-Note that for T > 0 ,  )~= -82F/(SH*) 2, where F is the free 
energy per site.] However, at T = 0 ,  ~ and #0 are quite distinct, as can 
be seen by considering their relationships to the frequency-dependent 
AF structure factor S(qAv;CO): the quantity #o is proportional to 
~dco S(qAv; CO), while Z is proportional to S de)(O-1S(qA~; (.0). 9 

For D-expansions with anisotropic exchange (A ~ 1), it is proper and 
convenient to calculate anisotropic correlation moments rather than/ t  o and 
#~ ; discussion of that topic is reserved for Section 4.3. 

In an ordered-state expansion, the unperturbed Hamiltonian possesses 
a finite number of degenerate ground states. Such expansions are 
analogous to classical low-temperature expansions. In particular, for 
I-expansions. ~o has two ground states related by a global S z -+ - S  z spin- 
flip operation. As the perturbing, XY part of the Hamiltonian A ~  is 
turned on, one looks for restoration of the symmetry of the Hamiltonian, 
that is, for the disappearance of order, by examining several quantities for 
which series may conveniently be generated by our method, and are 
defined below. 

(a) The staggered magnetization along the z axis, 

M*=N X~no,(S~) (1.9) 
i 

should vanish on approach to the disordering transition at A t>0 .  Of 
course, the angular brackets must now denote expectation values with 
respect to one of the two ground states; if averaged over both ground 
states, M t is identically zero for all A. 

9 These standard formulae are used in the context of quantum spin chains by Hohenberg and 
Brinkman. (293 
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(b) The zz structure factor 

Yo z= U -1Y~ ~o[(S~S;> - (Sz>(s;>] =Y~ [=o,(S~oX~)- <S;> 2] (1.10) 
ij i 

should diverge as A ~ A c. 

(c) The xy structure factor 

x x x x y .v # g = N - * ~ z o ( S i S  ~ + S [ S f ) = ~ o , ( S o S  , + S O S  ~ ) (1.11) 
ij i 

will typically exhibit some singularity as A--+A c. It need not diverge at 
criticality unless zlc = l, in which case naive correlation function scaling 
suggests that #~z and #~Y should diverge with the same exponent. In one 
interesting case, namely the S =  1/2 Heisenberg-Ising chain, {*s~ one can 
show that simple scaling does not hold, and that the two structure factors 
should diverge with distinct exponents which are, in fact, seen by means of 
series expansions. 

(d) One can also consider the second moments of the xy and zz 
correlation functions, defined in the natural ways, and, as always, the 
ground-state energy series will be generated as a necessary precursor to any 
other calculations. 

So far, the discussion has centered on what series can be calculated 
using the methods we have developed. Table I gives, in condensed form, a 
list of some series which have been constructed. For  example, the first infor- 
mation it communicates is that I-expansions for Eg, M*, #o ~, and #~Y have 
been developed for the purely bilinear (fl = 0), uniformly coupled (2 = 1), 
spin-half chain. The numbers in parentheses following each quantity denote 
the maximum order, in the appropriate variable, to which the series have 
been calculated for the quantity. Several of the quantities listed in the table 
have not yet been defined: #~, #2 a, and )/= appear in Section 4.3, while the 
"dimerization" D is discussed in Section 4.2. We should remark that the 
usage "fl -- 0, ~"  in Table I underneath "S = l, D-expansions" indicates not 
that we have computed two-variable series, in 2 and A, nor that the 
coefficients of 2 ~ are known as functions f ,(A);  but, rather, that for any 
fixed A we are able to generate the appropriate series in 2, and that we 
have done so for several A values. 

As a final motivation for the series expansion method described in this 
paper, we display in Fig. 2 two sections of the phase diagram for the spin-1 
chain. r (Note that the diagram on the bottom is not identical to its 
counterpart in ref. 17: there was an error in the code for generating 
D-expansions for anisotropically-coupled S = l  systems which was 
discovered long after ref. 15 appeared in print. For  details, see ref. 23.) The 
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Table I, Series Generated Using the Method of This Work ~ 

S = 1/2, 13 = 0 
I-expansions (in A ), 2 = 1 

Linear chain 
Eg (22), M t (22), ~)~ (22),/~Y (12) 

Square lattice 
Eg (10), M* (10), #~)2 (10) 

D-expansions (in 2), A = 1 
Linear chain (the unique nearest neighbor dimerization) 

Eg (15), #o (7), #2 (7), Z (7) 
Square lattice (columnar dimerization) 

Eg (6), #o (6), #2 (6), Z (6) 
Square lattice (staggered dimerization) 

E~ (5), ~0 (5), ~2 (5), Z (5) 
Honeycomb lattice (columnar dimerization) 

Eg (6), #o (6), #2 (6), Z (6) 
S = 1, Linear chain (the unique nearest neighbor dimerization) 

I-expansions (in A) 
2 > 0 , / 3 >  - 1  [resp, 2 =  1] 

Eg (16[18]),  M*(16[18]),  bt~3 z (16) 
D-expansions (in 2) 

/3=0, A > 0  
Eg (11), ;~o ~ (5), ;~ (5), z ~ (5) 

/3> -1/3 ,  A = 1 
Eg (11), ~o ~ (5), g~ (5), Z zz (5), O (10) 

a The numbers in parentheses indicate the order to which the series have been evaluated, to 
date. 

information used to construct the phase diagram comes entirely from 
analysis of I- and D-expansions, except for the knowledge that the point 
2 = A  = /~=  1 is a multicritical (and, in fact, Bethe-ansatz-solvable) point. 
The series also allow one to estimate many critical exponents. When one 
considers the effort spent in performing finite-chain studies 1~ just to under- 
stand what happens along the line/3 = 0, ). = 1, with sometimes inconclusive 
and conflicting results, the power of the series expansion approach becomes 
yet more impressive. 

The plan of the remainder of the paper is as follows: The next section 

10 See in particular the exchange of opinions by refs. 31. Sogo and Uchinami ~ use a finite- 
temperature (and finite-size) quantum Monte  Carlo method and deduce a T = 0  phase 
diagram inconsistent with the Haldane conjecture (and which is almost certainly 
wrong-- the  effects of finite T are worse than they suppose). Zero-temperature finite-size 
studies of the gap at the isotropic point (A = 1), such those of ref. 33, have convinced most 
observers that the structure of the phase diagram along the line ~. = 1,/3 = 0 is as displayed 
in Fig. 2. 
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lays out the general principles underlying all of the calculations. In 
particular, we show how much of the formalism of connected cluster 
expansions, which is well known in the context of high-temperature expan- 
sions for classical spin systems, applies equally well to coupling-constant 
expansions for quantum spin systems at T=0;  however, the notion of 
connectedness requires reappraisal. We further show how the graphical 
"weights" can be accurately and efficiently computed, via a recursive 
implementation of Rayleigh-Schr6dinger perturbation theory. In short, 
Section 2 provides a general scheme for constructing many T= 0 quantum 
series expansions. 

As one might expect, implementation of the general scheme is never 
entirely trivial, especially if one wishes to obtain high-order expansions 
(i.e., to the highest order possible using presently available computers). 
Thus, in Section 3 the most straightforward application of that scheme, to 
D-expansions for S =  1/2 systems with /3 = 0  and A = 1, is described at 
length. In Section 4 we discuss rather more briefly what is required to 
generate D-expansions for S = 1 systems, and for general values of/~ and 
A. The special features of I-expansions are examined next, with particular 
attention to the nature of connected graphs in that case. The last part of 
Section 4 describes further expansions which have been generated by the 
method put forth in Section 2, and others which should be feasible, but 
which we have not yet attempted to carry out. Section 5 offers a conclu- 
sion, including a discussion of the relative merits of series expansion and 
standard finite-size diagonalization methods for studying quantum spin 
systems. The Appendix contains some of the series indicated in Table I, and 
gives references for those which appear elsewhere. 

Readers primarily interested in understanding how the expansions 
central to refs. 16-23 (and other work is progress) are obtained may wish 
to stop after Section 2. The rest of the paper is written for those who might 
be interested in doing series expansions themselves, either to check our 
calculations or to gain insights into novel problems. 

2, CLUSTER EXPANSIONS:  GENERAL C O N S I D E R A T I O N S  

We begin with a treatment of the basic principles of cluster expansions 
(more thorough discussions, in the context of expansions for classical 
models, may be found in ref. 28). It will be evident that the quantum 
mechanical nature of the systems we wish to study manifests itself mainly 
in the notion of connectedness and in the evaluation of the graphical 
weights (whose definition will follow). For classical systems, weights are 
usually trivial to evaluate, but for quantum systems at zero temperature it 
is not obvious how to compute the weights efficiently. Thus, we explicitly 
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derive a recursive implementation of Rayleigh-Schr6dinger perturbation 
theory which is well suited to computer calculations. 

Let us start by introducing some generic notation for the purposes of 
this section. Suppose that one is given an unperturbed Hamiltonian X/go and 
a perturbation ~,~, and that the problem at hand is to study the zero- 
temperature characteristics of the one-paramater family of Hamiltonians 
given by 

~*f~ -- Jr0 + aJ~ (2.1) 

In particular, one wants to obtain power series expansions, in the variable 
c~, for various zero-temperature properties of Jr .  Denote by P such a 
generic extensive property (e.g., the total ground-state energy). 

In the cases of interest to us, ~1 (and d4do as well) is naturally 
expressed as a sum of various "local" terms. For example, all of the 
Hamiltonians discussed explicitly in Section 1 were of the form 

= ~, h,~ (2.2) 
<iy> 

where ( # )  ran over (some subset of all) nearest neighbor pairs and h 0 
contained only the operators S,, Sy, Sj, and S;. More generally, one might 
want to include in ~ sums over nearest triples, etc. For any Hamiltonian 
with such character, it is both natural, and advantageous in the develop- 
ment of cluster expansions, to associate each term in -~1 with an individual 
coefficient c~ k. [Here k is a generic index which, for Hamiltonians of the 
form (2.2), would run over nearest neighbor pairs and could just as well be 
written ~/.] 

Now consider a formal multivariable expansion of P in powers of 
the :e~, 

P({c~k})= ~ p{n~} 1 ~ *  (2.3) 
{nk} k 

where each of the nk runs over the nonnegative integers. As an extensive 
quantity, P will typically be proportional to N, the number of spins, and 
hence will be infinite in the thermodynamic limit. Similarly, P{0,o,...}, which 
gives the value of P for ago, will also be proportional to N. It will become 
clear as we proceed that any other P{nk} can be obtained by considering 
only finite systems, and hence will remain finite in the thermodynamic 
limit. For convenience, and without loss of generality, we assume hence- 
forth that P has been defined so that P{o,o,...~ =0. 

A cluster expansion comes about by a reorganization of the terms in 
the sum (2.3), so that it takes the form 

P({~k}) = ~  WEe] (C) (2.4) 
c 
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where the sum now runs over all nonempty sets C of indices k, that is, over 
all clusters. The cluster "weight" Wre 3 (C) contains all terms in the expan- 
sion for P which have at least one power of ek for all the k in that cluster 
and no powers of any other ek. It is not hard to see that the regrouping 
of all the terms into weights is well defined and unique: the weight of a 
cluster is given in terms of various P({c~k} ) by "subtraction of its 
subclusters." To be precise, one can invert (2.4) to obtain 

Wce~(C)=P(C ) -  ~ Wre3(C') (2.5) 
C ' ~ C  

where C' runs over all nonempty subclusters of C and P(C) denotes the 
expansion (2.3) in which all ~k with k r  C are set to zero. 

We invoked the multivariable expansion merely to find a formal 
definition for the weights. One is ultimately interested in setting all of the 
e~ equal to e. Once that is done, many clusters will give identical contribu- 
tions to the expansions for any property P. Clearly, cluster related by the 
basic symmetries such as translations and various reflections will have the 
same contribution. We identify such a set of equivalent clusters by a graph 
G, and the number of such clusters per spin on the infinite lattice is called 
the lattice constant of the graph, L(G). Thus we may express the property 
P for the infinite lattice as 

P(cc)/N= ~ L(G) WEe3(G) (2.6) 
G 

where G runs over all graphs (or "distinct" clusters). 
At first glance, Eq. (2.6), in conjunction with the definition (2.5), seems 

to be no more useful than the expression (2.3); however, a moment's 
reflection shows this not to be true. The essential feature of the weights is 
that if the cluster C contains s elements (i.e., indices of terms in Yt]~), then 
by construction the coefficients of ~o, ~1 ..... ~,-1 in WEp3(C ) are identically 
zero. (In some cases, such as I-expansions for Eg, M*, and ~;z, one knows 
that higher powers of ~ also do not appear in the weights: see Section 4.4.) 
Thus, to obtain an expansion for PIN correct to order ~'~, one needs only 
to identify and evaluate the weights of all graphs containing up to m 
elements. In general, this would still entail calculations for an infinite 
number of graphs. A crucial feature of many properties is that all 
"disconnected" graphs have weights which are identically zero, and only a 
finite number of "connected" graphs need to be considered at each order. 

The exact meaning of "(dis)connected" depends on ~o and ~ .  Every 
particular case must be given individual attention, and in Sections 3 and 4 
the nature of connectedness is described for each type of expansion we have 



Expansions for Quantum Many-Body Systems 1105 

generated. Here we define disconnectedness in a general context, and 
sketch the argument that disconnected graphs have zero weight. 

A sufficient condition for a cluster C to have zero weight for a 
property P is the following: If C is the disjoint union of nonempty 
subclusters A and B, then 

P(C) = P(A)  + P(B) ~ WcpI(C) = 0 (2.7) 

[The additivity of P implies that in the expansion (2.3) there can be no 
terms which include c~ k for all k s C, and hence WEp1(C ) = 0.] 

Associated with any cluster C is a "cluster Hamiltonian" oCt'c, 
consisting of the parts of ~ specified by C and also certain terms selected 
from ~0. To describe exactly which terms from -~o should be included in 
~ c  requires a brief digression. There are two main considerations. First of 
all, if the operator S~ (or S~, S{,...) is in one of those parts of ~1, then all 
terms in ~o containing S~ (etc.) must be included in Jfc as well. But there 
is an additional consideration. The unperturbed Hamiltonian partitions the 
infinite lattice of spins into basic units, so that an eigenstate of Neo is 
uniquely specified as a product of eigenstates of those units, for example, 
individual spins in the case of I-expansions, pairs of spins (dimers) for 
D-expansions, etc. In order to apply the weight-evaluation method to be 
described below, it is essential to include in -/fc sufficient terms from .~o 
that such units are kept intact. 

Let us consider the nature of the vector space upon which OF c acts. 
This space is clearly a product over spin spaces for some set of spins ~(C) .  
That set can contain, at most, all the spins for which the corresponding 
operators appear in ~<~c. In a disordered-state expansion, all such spins are 
generally included in 5~(C), but in an ordered-state expansion that is not 
the case. Consider an I-expansion. The states of spins associated only with 
terms from ~ are unaffected by ~ c ,  and hence those spins should be 
excluded from 5~ Such spins may be appropriately termed "boundary" 
spins. Their states depend on the global eigenstate about which one 
chooses to expand, and they then influence the diagonal terms of Jt~c just 
as would a fixed, position-dependent magnetic field on the boundary of the 
cluster. Furthermore, in evaluating cluster properties, such as the staggered 
magnetization, the boundary spins should not be included--it may be seen 
that such spins contribute only to zeroth order in perturbation theory. 

P(C) will typically be some functional of the ground state of ~r The 
properties for which we can generate series expansions will have no 
contribution from any cluster C for which the cluster Hamiltonian can be 
written as a sum of subcluster Hamiltonians acting on direct product 
spaces in the form 

2/gC = ~ | I s + I A | J f  8 (2.8) 
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where, as above, C is the disjoint union of nonempty A and B, and the I's 
are appropriate identity operators. We take this as the basic notion of dis- 
connectedness. Clearly, any cluster consisting of two well-separated pieces 
will satisfy this condition. 

Since afa (Dis and I A @ ~ B  commute, the ground-state energy will 
have a "connected graph expansion," that is, only connected graphs will 
have nonzero weights and thus need to be considered. Furthermore, the 
ground-state wavefunction for the disconnected cluster C can be written as 

(2.9) 

We will now show that this is enough to guarantee connected graph expan- 
sions for various other quantities of interest. 

The requirement (2.8) on disjoint clusters implies that 5e(C) is the 
disjoint union of 6e(A) and 5e(B). It then follows from (2.9) that for the 
sublattice magnetization, the relation 

i e ~ ( C )  i c .~(A)  i �9 ~ ( B )  

(2.10) 

holds, so that the disconnected cluster C has zero weight for M t. 
A similar additivity property is easily demonstrated for the various 

correlation sums (and, indeed, for the individual correlation functions for 
any particular site-to-site distance). The terms in any of the correlation 
sums take the form ~ j ( I T  c >), where ~j  is a functional which depends only 
on the states of the spins on sites i and j. Additivity, and thence the 
existence of a connected cluster expansion, trivially follows if ~j(I T c > ) =  0 
when i e 6f(A) and j e 5e(B). This requirement clearly holds for the correla- 
tion sums and moments defined in Section 1, but the case of /~)z Esee 
(1.10)] deserves special attention. It is essential that the functional 

be used in constructing the series for #~z, rather than the apparently 
equivalent choice 

rcej ( ~c[ S ~ S ff l gtc> - ( (  gtcl S ~ I gsc>) 2 (2.12) 

because t<S~ >1 is not site independent in a finite cluster (though it is in the 
infinite system) and hence the latter does not satisfy the condition on @j 
mentioned above. 

Quantities such as the AF susceptibility defined in (1.8) do not depend 
on the ground-state wave function, and so the above arguments do not 
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address whether they possess connected cluster expansions. However, it can 
be seen that if the staggered field Hamiltonian can be decomposed along 
the lines of (2.8) on disconnected clusters--which is easily checked--then 
the entire two-variable expansion of the ground-state energy in ~ and H ~ 
has a connected cluster expansion. Since Z amounts to the terms in that 
expansion which are second order in/-/*, it in turn will have a connected 
cluster expansion. 

[-It is sometimes possible to implicitly reorganize the perturbation 
expansion in a way that reduces the number of connected graphs for which 
weights need to be calculated. Let us revisit the original multinomial 
expansion (2.3), where an individual coefficient was associated with every 
term in the perturbing Hamiltonian. At that stage, one can partition the ~k 
into sets which are thereafter treated as a single unit: any cluster that 
contains one coupling from such a set must contain all the couplings in 
that set with the same strength. Subgraph subtraction, etc., works as 
before; the only difference is that the least possible power of ~ in WEp J (G) 
is no longer the number of terms of ~ in G, but rather the number of 
sets of terms of ~ in G. A demonstration of the usefulness of such 
"reorganized" expansions is given in Section3, in the case of the 
D-expansion around the columnar dimerization of the square lattice 
Heisenberg model. 

Yet another scheme for reorganizing the perturbation theory has 
proven useful for D-expansions with further neighbor interactions. (Let us 
restrict the following discussion to D-expansions, for simplicity.) Rather 
than defining clusters as sets of terms in Jt~l, one may define them as sets 
of terms in ~o. Associated with any such set of terms in ~o is a 
corresponding set of terms in ~ ,  which couple the dimers in ~0. A 
property P(C) is then defined by setting to zero the 7k for all terms in 
which are not so associated with the specified dimers of ~o. One can show 
that subgraph subtraction works as before, but that subgraphs should be 
defined in terms of subsets of the dimers (rather than of the interactions) 
and that for a cluster composed of m dimers, the weight W[p~(C) will 
generally vanish only up to order c~ m- 2. The details of the graph enumera- 
tion procedure must obviously be somewhat different from the method to 
be described in Section 3, but the modifications are straightforward and we 
will not discuss them further.] 

Even after all the requisite graphs and their associated lattice 
constants have been identified for a given system, the process of generating 
the desired series expansions is far from complete. One must still calculate 
the weights W[p] (G) for each property P of interest and for each graph G; 
to be more precise, one must calculate all of the P(G) (with all the 
perturbing couplings ~k set equal to c~) and then apply (2.5) to find the 

822/59/5-6-2 
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weights. In the following paragraphs,  we outline a procedure which, when 
implemented with care, can efficiently generate P(G) series for the 
ground-sta te  energy, some susceptibility-like quantities which we define 
below, and various ground-state  expectation values. 

Each graph G is associated with a finite-dimensional vector space [-the 
produc t  over the spin spaces for each spin in 5~(G)] and a Hamil tonian  
restricted to that  space (which we have called the cluster Hamiltonian).  For  
nota t ional  convenience, we will drop further explicit references to G in the 
formulas, but  the reader should keep in mind that  every quanti ty such as 
gg, ~ ,  etc., depends on the graph under consideration. The cluster 
Hamil tonian  has the form 

J :  = ~o + e ~  +/3~2 (2.13) 

where Jgo and ~ are the restrictions of the full unper turbed and perturbing 
Hamil tonians  to G; the new term containing ~f2 is included so that  a 
susceptibility may  be defined by )~a = -~2E/~21 ~ = o. To proceed further, it 
is essential that, for any G, )fo should possess a unique ground  state 
I ~ o ) .  11 If this condit ion is satisfied, then nondegenerate  per turbat ion 
theory, as presented below, permits one to determine coefficients e,,j) 
and vectors ~(i.j) in the expansions of the ground-state  energy and 
unnormal ized wave vector in the form 

E = ~, e(i'J~c~ifi j (2.14) 

I%> = S I ~<,,+> > r (2.15) 

Once the expansion coefficients and vectors are known,  it is formally 
straightforward to obtain series in cc for the various P(G):  

Eg = ~ e(i,o)O~ i (2.16) 
i 

= i (2.17) Z~ - 2  ~ e(i,2)~ 
i 

11 If the global -~o has a unique ground state and a finite gap, this will generally hold. If, on 
the other hand, the global acg o has multiple ground states, then one of them must be chosen 
to expand about. The uniqueness of [g J o) is enforced by the embedding of the graph G in 
the infinite system, which is chosen to be in some particular ground state. To be more 
concrete, consider an I-expansion. In that case, the choice of global ground state fixes the 
"boundary spins" of G (recall the discussion regarding the definition of the cluster 
Hamiltonian); these boundary spins provide a symmetry-breaking field which makes the 
ground state of G unique. Such a mechanism should hold generally: if the global ~0 has 
multiple ground states, then in the representation in which a~ 0 is diagonal, there ought to 
be boundary spins which affect (and are not acted on by) gcgG. If, however, the ground state 
of the global ~o is exponentially degenerate, then the field produced by the boundary spins 
is not generally sufficient to render the ground state of ~c nondegenerate. The series expan- 
sion method described here cannot be applied in such cases. 



Expansions for Quantum Many-Body Systems 1109 

and, for any operator (9, 

<c0)  = ( 1 '  �9 ) - '  < co I ' "  = " " + J  
i , j  

with 

(2 .18)  

( "1 ' )  = ~  (~u(,,o~ I 5u(j,o)) ~'+j (2.19) 
i , j  

We have found that a simple recursive formulation of Rayleigh- 
Schr6dinger perturbation theory is ideal for computer  calculations of the 
expansions (2.14) and (2.15). It is necessary to work in a basis {]k)} 
(k---0 ..... M -  1, M being the dimensionality of the relevant vector space) in 
which ~0 is diagonal, with eigenvalues Ek. (In fact, our method is only 
useful in practice if ~0 has some obvious representation in terms of "local" 
expectation values, for example, the spin representation for I-expansions.) 
In particular, set [ 0 ) =  17"~o,o~). Then, by inserting (2.14) and (2.15) into 
the Schr6dinger equation 

(ago + c ~  + f l~2) Ig tg )  = E  I~Ug) (2.20) 

and collecting terms which multiply cdfl j, one obtains 
i, j 

J t o l g t ( i , s ) ) + ~ [ ~ ( i  , , s ) ) + ~ 2 l ~ ( ~ , j _ , ~ ) =  ~ e(r,j, )tgt(~_c,j_l)) (2.21) 
i', j '  = 0 

where I ~u(i,j)) -= 0 if i or j is less than 0. Before the desired recursion rela- 
tions can be written, one must specify a "normalization convention," that 
is, a set of values for (0l  kc(i,j)). Since i~(0,o;) is just the unperturbed 
ground state, we know (01 g*(o,o~)= 1, but all the other (01 7'~i,i )) may 
be chosen arbitrarily: the choice will certainly affect the form of the states 
[gJ(~,a)), but will not affect either e(g,s) or (CO). A particularly convenient 
normalization convention is given by (0[ g*(*,s/)=0 for (i, j ) r  (0, 0); with 
this choice, one immediately finds the recursion relations 

e(~,s) = (01 ~ I ~( , - , , j ) )+  (0[ ~ [ ~ - I ( i , j  1)) (2.22) 

and, for k > 0, 

1 ( 
( k  [ g"(i, :) ) = Eo - Ek ( k l ~ I T(~- ,, : /)  + (kl ~ I g*(,, j -  a ) ) 

e(i',j')(kl ~J(i--i',j--j'))) (2.23) 

where the primed sum runs over i ' =  0,..., i and j ' =  0,..., j, excluding 
(i', j ' )  = (0, 0) and (i, j). 

This completes the formal "recipe" for generating coupling-constant 
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expansions for quantum spin systems at zero temperature. To recapitulate, 
one begins by identifying all the connected graphs and their lattice 
constants, which one must include in (2.6) in order to obtain expansions 
valid to some desired order. Then, for each graph, one must obtain an 
explicit representation for ~o, ~ ,  and ~ (if a susceptibility is to be 
calculated), so that the recursion relations (2.22) and (2.23) may be 
applied. The various properties of interest are then obtained following 
(2.16)-(2.19); one also needs the matrix elements, in the representation 
already chosen for the Hamiltonian, of every operator (9 which may be 
needed to evaluate some property P. With the various P(G) in hand, one 
then performs the subgraph subtraction (2.5) to obtain the weights 
WE? l (G). At this stage one should examine, for a graph containing m terms 
of ~f~, the coefficients of terms up to era-1 in the weights. As discussed 
following Eq. (2.6), those terms should identically equal zero; however, 
numerical roundoff errors will typically accumulate and leave them with 
some small value which serves to indicate the numerical accuracy of the 
series obtained. If those coefficients are not all nearly zero, one knows that 
something is wrong in the calculation: either a subgraph has been 
inadvertently omitted in (2.5), or, more likely, there is a coding error in the 
routines which calculate the P(G). Finally, when the weights have been 
calculated for all the graphs, the last step is to evaluate the sums (2.6). 

Let us conclude this section with an observation concerning the 
number-theoretic properties of the coefficients in these series expansions. It 
should be apparent from the recursion relations (2.22) and (2.23) that the 
energy eigenvalue series e(i,:) and the series for the matrix elements of the 
eigenfunctions (kl~lJ(i,j)) arise entirely from rational arithmetic operations 
between matrix elements of Jefo, ~ ,  and ~ .  (The series for a property P 
associated with an operator (9 requires further rational arithmetic opera- 
tions involving the matrix elements of (9.) Hence, if all of these matrix 
elements are rational numbers, the resulting series must have rational terms 
as well. In fact, as will be seen in the following section, the requisite matrix 
elements are, indeed, rational for D-expansions in isotropically-coupled 
spin-half systems. In general, the matrix elements will not be rational, but 
they will in almost all cases be algebraic, that is, the solutions of finite- 
order polynomial equations with rational coefficients. For example, for 
isotropic D-expansions for S > t/2, the matrix elements are, at worst, finite 
sums of rational multiples of square roots of integers. Arithmetic opera- 
tions between algebraic numbers yield algebraic numbers, so, as a rule, 
series expansions in coupling constants for quantum spin systems yield 
algebraic (and in some circumstances, rational) coefficients. This fact has 
not proven relevant to the practical calculations of series, but it is an 
interesting point of principle. 
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3. DETAILS OF D - E X P A N S I O N S  FOR S = 1 / 2  

This section gives a detailed description of how D-expansions are 
carried out for systems with S = 1/2, /~--0, and A = 1 on the lattices dis- 
played in Fig. 1. We begin by characterizing the connected graphs and 
describing the method, which can be characterized as exhaustive enumera- 
tion on the lattice, which we used to identify all such graphs (up to the 
desired order). The next part of this section is concerned with the weight 
calculations. Particular attention is paid to the computational demands of 
high-order calculations. (For "more general" D-expansions, that is, for 
S >  1/2 spins with anisotropic and biquadratic interactions, the graph 
enumeration is unaffected. However, the weight calculations obviously 
require modifications, which are described in Section 4.) The final subsec- 
tion describes some special features of the D-expansions in one dimension. 
[For  several properties, such as the ground-state energy, it is possible to 
obtain expansions to higher order than for other properties, such as the 
spin-spin correlations, using exactly the same set of graphs. Thus, it has 
been possible to expand Eg for the S =  1/2 chain to 0(215) even though the 
moments of the structure factor are known only to 0(27).] 

3.1. Graph Enumerat ion 

Graphs for D-expansions may be represented pictorially as points 
(denoting spins) connected by solid "bonds" (denoting interactions in ~o) 
and wavy "links" (denoting interactions in .~).  In one dimension, all the 
connected graphs may be trivially written down as is done in Fig. 3. For 
the various two-dimensional lattices, the number of graphs which 
contribute to the expansions at O(2 m) grows exponentially with m, and it 
is essential to implement systematic methods on a computer for generating 
the graphs in a form suitable for use by the weight-calculation programs. 

For the three types of 2D lattices (plus dimer covering to represent 
~o) that have been studied, shown in Fig. 1, we list in Table II the number 
of additional connected graphs one has in each order. For the square 

Fig. 3. Graphs for the simple D-expansion in one dimension with up to three links. 
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Table II. Number of Additional Graphs Needed in the Simple D-Expansions at 
Each Order for the Three Two-Dimensional Lattice/Dimerization 

Combinations Shown in Fig, 1 

Square (columnar) Square (staggered) Honeycomb 

1 2 2 1 
2 3 6 3 
3 10 29 7 
4 28 164 27 
5 110 1094 99 
6 433 - -  427 

lattice with columnar dimers, the two terms of ~r which connect a 
vertically-stacked pair of bonds are treated as a single link for the purpose 
of graph enumeration; recall the discussion in Section2 about the 
"reorganization" of cluster expansions. Many more graphs would arise if 
that grouping of terms in ~ was not done. For example, the single graph 
in Fig. 4a stands in for the two distinct graphs in Fig. 4b which appear if 
the terms in ~ are not regrouped. Furthermore, as will become evident in 
Section 3.2, the weight calculations for the graph in Fig. 4a require no more 
effort than for either of the two graphs in Fig. 4b, so there is no reason 
whatsoever not to reorganize the perturbation theory in this way. 

Figure 5 shows all the graphs for the honeycomb lattice with up to 
three links, along with their lattice constants. Note that many graphs with 
the same topology appear separately in this figure: at third order, three of 
the seven graphs share the topology of the linear chain, and thus give the 
same contribution to Eg, #o, and X. We insist, however, on enumerating all 
geometrically distinct graphs, so that ]~2 can be calculated. Moreover, any 
spin-spin correlation can then be obtained; such capability is essential for 

(a)  

: = ~- = 

s 
v A 

(b) 

Fig. 4. Illustrative graphs for the D-expansion starting from the columnar dimer configuration 
on the square lattice; see text for discussion. 
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studies of frustrated systems where the character of the preferred ordering 
is not known a priori. 

One should classify the geometrically distinct graphs by topology, 
calculate the full set of spin-spin correlations for a single graph from each 
topological equivalence class, and only as a final step use the geometric 
information to determine the contributions to /z2 from each geometrically 
distinct graph. Such a procedure would undoubtedly reduce the computer 
time used in the weight calculations substantially compared to what we 

| | 

| | -a_, D_. 
| 

| 

~ .  | 

_ _ |  

Fig. 5. Graphs with up to three links on the honeycomb lattice. The circled number next to 
each graph gives the number of translationally (but not otherwise geometrically) distinct 
forms of the graph, which is twice the lattice constant L use in Eq. (2.6). 
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did--which was to perform the weight calculation for every geometrically 
distinct graph. However, it seemed wise to do the first calculations without 
the additional complication of classifying graphs by topology--particularly 
since there are so few checks on the correctness of the graph enumeration, 
and the classification procedure is not so easy to program. Since the 
number of terms in the series which could be obtained by our "brute-force" 
approach using only modest computer time (on the order of 1 day on a 
Sun 3/50, of which only a few minutes was spent in graph enumeration) 
was often sufficient to obtain useful results, we eschewed the more 
sophisticated approach. However, the topological classification would 
probably be necessary if one wanted to obtain terms of higher order than 
have been calculated to date for these 2D models. 

The method used to generate the connected graphs, namely, 
exhaustive enumeration on the lattice, is quite straightforward. Suppose 
one has identified all graphs with N - 1  links. To find all those with N 
links, one takes each of the (N-1)-l ink graphs in turn and attempts to 
graft a link [which will be accompanied by another bond, unless the link 
connects spins on two bonds already present in the (N-1)-link graph] in 
every possible way onto every spin of the ( N -  1)-link graph. Some of these 
attempts will be rejected because the graft overlaps a link already present. 
When the link may be legally attached to form an N-link graph, the graph 
is assigned an integer by a rule which yields the same number for all 
geometrically equivalent graphs, but different numbers for inequivalent 
graphs. This number is compared to the list of numbers assigned to all 
previously-generated N-link graphs. If it is already present on the list, the 
"new" graph is rejected. If not, the number is added to the list, and all the 
information about the graph needed for the weight program is the 
computed and written to a file. It is also easy to determine the connected 
subgraphs of the graph at this stage. [Recall that only connected subgraphs 
need to be accounted for in (2.5), since the disconnected ones have zero 
weight.] Each of the 2 N -  2 proper subgraphs is given its integer represen- 
tation, and only subgraphs for which the corresponding number can be 
found on the list of connected graphs are put on the list of connected sub- 
graphs for the new N-link graph since the others, by construction, must be 
disconnected. 

This telegraphic description of the enumeration method requires only 
a few additional remarks to constitute a complete recipe. First, the basic 
representation of graphs must be addressed. It is convenient to describe a 
graph by the coordinates of its links on a complementary lattice. (This is 
not the usual dual lattice, in which sites correspond to plaquettes of the 
original lattice.) To ilustrate this, consider the honeycomb lattice with the 
dimer covering shown in Fig. 1, for which the complementary lattice is 
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sketched in Fig. 6. The complementary lattice is obtained by treating the 
links as the lattice sites (drawn as open circles) which are connected (by 
thin lines) if and only if the corresponding links share a spin or have spins 
on the same bond of the original lattice. The sites of the complementary 
lattice must then be imbedded in the Cartesian lattice with integer 
coordinates (this is entirely trivial for the lattice of Fig. 6, but less so in 
other cases), so that individual links may be denoted by ordered pairs of 
integers, and graphs by sets of such ordered pairs. 

Second, one requires a "canonical representation" so that graphs 
which differ only by translations may be identified. We give here one of 
many possible definitions of a canonical representation, which is 
noteworthy only because it is what we have used in practice. If (xi, Yi) 
denotes the coordinates of the links of a graph on the complementary 
lattice, then there is one link--call it the minimal link--which has the 
minimum x coordinate of all those links with the minimum y coordinate, 
that is, which is the leftmost of the lowest links. A graph is in canonical 
form if its minimal link is at some particular site on the complementary 
lattice, say (x (~ y(O)). This is a correct procedure only if all links are 
identical up to lattice symmetries, as they are for the honeycomb lattice of 
Fig. 1. For both dimer configurations on the square lattice, however, there 
are two kinds of links, horizontal and vertical--call them types 0 and I. A 
unique canonical representation can then be determined by the condition 
that the minimal type 0 link must be at (x (~ y(O)); if the graph consists of 
only type 1 links, the minimal link must be at some different site, say 

"1." - 2  

�9 o 

3 "  ' 4  

Fig. 6. (Bottom) The dimer-covered honeycomb lattice, and (top) its complement. The 
correspondence between the original and complementary lattices is shown explicitly by the 
labels. 
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(x(1), y(l))__ (x(0), y(O)_ 1). The imbedding of the complementary lattice 
will then be such that the types of links may be distinguished by the values 
of the coordinates modulo 2, for example. 

Any cluster can now be given a numerical representation which is the 
same for all geometrically equivalent clusters but different for inequivalent 
clusters. First put the cluster in canonical form by an appropriate transla- 
tion. Now suppose, as will always be the case, that all clusters in canonical 
form, with up to some fixed number of links, have x and y coordinates in 
the range 0 to b - 1. Assign each link (xi, Yi) the number di = xi + by ,  Sort 
the d~ in descending order amd assign to the cluster the number 
d = Z ~ i ~  ks d~b 2(~-~). The final numerical representation for the graph is 
obtained by calculating d for all geometrically equivalent forms of the given 
cluster and taking the least of those d as the numerical representation. (For 
the lattices of Fig. 1, geometrically equivalent clusters may be obtained by 
reflecting the given cluster about the x or y axis, and by inversion.) Finally, 
the lattice constant, up to an overall constant factor, is equal to the 
number of distinct d values obtained for the various geometrically 
equivalent versions of the same graph. 

This completes the discussion of graph enumeration for simple D- 
expansions; readers interested in the full  details should write to the authors 
for copies of the computer programs. The same basic strategy of grafting 
links and assigning prospective graphs a unique integer can be (and has 
been) used for other, more challenging graph enumeration problems, as 
will be discussed in Section 4.4 for I-expansions. 

3.2. W e i g h t  Calculat ions 

The evaluation of weights for a given graph apparently entails a 
straightforward sequence of calculations. First there are the recursion rela- 
tions (2.22) and (2.23); to obtain quantities such as /~o and ~2 some 
expectation values must be evaluated using (2.18) and (2.19); finally, 
weights are determined by subgraph subtraction, Eq. (2.5). However, this 
list is not complete. Indeed, much of the computer time used in weight 
calculations is spent in putting the perturbing Hamiltonian ~ into matrix 
form, which we denote [~4~ ], suitable for the recursion relations. Even that 
cannot be done without first carrying out other calculations. In this subsec- 
tion, the method we have used for calculating weights for the simple 
S = 1/2 D-expansions is described in detail. 

Suppose the graph under consideration consists of nD dimers coupled 
by some number n l of terms in 4 .  The representation of the states of the 
system in which ~0 is diagonal [which, as we pointed out earlier, must be 
used in order for the simple recursion relations (2.22) and (2.23) to hold] 
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is the "dimer representation," in which each dimer is associated with one 
of the four eigenstates of a single dimer. The dimer eigenstates consist of 
one singlet and three triplet states; we denote them by 0 for the singlet and 
1, 2, 3 for the triplet, with SZ= 0, l, and - 1 ,  respectively. Every eigenstate 
of Yf0 may be written as a list of r/D integers e~, each in the range 0-3, or, 
alternatively, as a single integer 

nD 
e - - l +  ~ ei4 i-1 (3.1) 

i = 1  

in the range 1 to 2 2~D. However, not all of these states are coupled to the 
unperturbed ground state by either ~ or x/f2 (if the latter represents a 
staggered magnetic field): both operators commute with the total S z 
operator, and hence we may restrict the vector space to states with StZot ~--0. 

There are 

C(nD)=(2nD) 
\ r / D /  

such states, which henceforth we refer to as the basis states. 
The first step in the calculation is to find all eigenstates of ~o with 

StZot ~--0 and create two lookup tables. One table--actually, a two-dimen- 
sional array--puts  each integer from 1 to C(no) (which now serves to label 
the basis states) in correspondence with the representation of that state as 
a list of e i. The other table puts the integers from 1 to 2 2nD [which index 
the full set of eigenstates of Yfo though Eq. (3.1)l in correspondence with 
the Iabel for the state in the basis if StZot = 0 for the eigenstate, or with 0 
otherwise. 

Next, the unperturbed energy, that is, the expectation value of ~o, is 
calculated for each state in the basis. This is easy to do because one simply 
looks up the representation of the state as a list of ei; each value of e~ 
corresponds to some energy, namely - 3/4 for ei = 0 and 1/4 for e~ = 1, 2, 3, 
and these energies for the individual dimers are added to obtain the total 
unperturbed energy of the basis state. 

Now one comes to the most challenging step, which is to calculate 
[Jf~]. It will become evident that [ ~ ]  is a sparse matrix. Hence, it should 
be stored in a standard sparse-matrix format: rather than storing the entire 
C(nD) x C(nD) array [ ~ ] i j ,  two smaller arrays [ ~ p t ) ]  and [Yt~ val~] are 
used. For  the former, the row index runs from 1 to C(nD) and the column 
index runs from 0 to M, where M should be the maximum number of non- 
zero elements in any row. The elements of [ o ~  pt)] are "pointers," while the 
elements of the C(nD)xM matrix [ ~ w ~ ) ]  are the actual (nonzero) 
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elements of [~r ]; explicitly, this means that all nonzero elements of [ ~  ] 
are given by 

= I- ~/'~ (val) q (3.2) 

whe re / runs  from 1 to C ( n D ) a n d j  runs from 1 to [H]Pt)]i0~<M. 
The savings in memory is a factor of roughly C(nD)/2M compared to 

storing the matrix in the usual way. Furthermore, much computational 
effort is saved in matrix multiplication, which needs to be done at each step 
of the recursion formula, since only the nonzero elements of [o~]  will 
actually be used. To be precise, the multiplication of the vector V; by [~1]  
is performed as follows: 

[ j~a~Pt)] t 0 

F'~I l O" Vy = S 1- d'Ir ]val ) l O' V [ .,ut~IPt) ] ,  ( 3 . 3 )  
j = l  

To see how [~,~f~] is calculated, consider just one of its terms, say 
S(~)" S(2), where S(i) corresponds to one of the spins on the ith dimer in the 
graph. Since each of these spins could be on either the right or left side of 
the dimer, there are four distinct terms of this form, ~2 not all of which need 
appear in any particular ~ .  It is clear that the matrix element of that 
operator between any two basis states written as (el,..., e, D) and (el ..... e',D) 
will be zero unless ej = ej for 3 ~< j <~ nD. Thus, the problem of constructing 
[ocg~] 0 is reduced to repeated lookups in the four 16x 16 matrices 
<e~,eal S(a)'S(=)le'l,e~>, all of which elements take on the value 0 or 
+ 1/4. One of the matrices is displayed in Fig. 7; the others have zeros in 
the same positions, and differ only in some of the signs. No row of this 
matrix contains more than five nonzero elements, and thus an upper bound 
for the number of nonzero elements in any row of [~1]  is five times the 
number of terms in Yt~l. This shows that [ ~  1 is indeed extremely sparse. 

The full calculation of [ ~ ]  in sparse matrix form thus involves the 
following three nested loops: (1) A loop over the C(nD) rows of the matrix, 
i.e., over the basis states, which are converted to the dimer representation 
(el ..... e,D ) by means of the lookup table constructed earlier. (2) A loop 
over the terms in Yt], i.e., over the links of the graph. (3) A loop over the 
16 states (el ..... e'nD) which could be coupled to (el ..... end ) by the term in 
~ .  When a nonzero matrix element is found, it is placed in [~]val)], and 
the corresponding [yy]pt)] is determined by looking up, in the other table 
constructed previously, the label for the basis state given the integer e' 
defined by Eq. (3.1). 

~2 Fo r  the case of c o l u m n a r  d imers  on the square  lattice, there are only three such terms, since 
in our  fo rmula t ion  of the pe r tu rba t ion  theory for t ha t  case a "left-left" l ink  is always 
accompan ied  by a " r igh t  r ight"  l ink,  and  vice versa. 
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I I 

(e 1,e 2) (e i , e 2 )  

( 0 , 0 )  �9 �9 �9 �9 �9 - �9 �9 �9 �9 �9 + | �9 + e 

( I , 0 )  . �9 �9 �9 - �9 �9 �9 �9 �9 �9 + �9 | - �9 

(2 ,0 )  �9 �9 �9 �9 �9 �9 - �9 - + �9 �9 �9 �9 �9 �9 

( 5 , 0 )  �9 �9 �9 �9 �9 �9 �9 + �9 �9 �9 �9 �9 �9 

(0, I )  �9 - �9 �9 �9 �9 �9 �9 �9 �9 �9 + �9 �9 - �9 

( '1,1) - �9 �9 �9 �9 �9 �9 �9 �9 �9 �9 + �9 �9 + �9 

(2, t )  �9 �9 - �9 �9 �9 �9 �9 - + �9 �9 �9 �9 | �9 

(3, I) �9 �9 �9 + �9 �9 �9 �9 �9 �9 �9 �9 + + �9 �9 

(0, 2) �9 �9 - �9 �9 �9 - �9 �9 + �9 �9 �9 �9 �9 �9 

( '1,2) �9 �9 + �9 �9 �9 + �9 + �9 �9 �9 �9 �9 �9 �9 

(2 ,2 )  �9 �9 �9 �9 �9 �9 �9 �9 �9 �9 + �9 �9 e �9 �9 

( 9 , 2 )  + + �9 �9 + + �9 �9 �9 �9 �9 - �9 �9 �9 �9 

( 0 , 3 )  �9 �9 �9 - �9 �9 e + �9 �9 �9 �9 �9 - �9 �9 

(1,3)  �9 �9 �9 - �9 �9 �9 + �9 �9 �9 �9 - �9 �9 �9 

( 2 ,3 )  + - �9 �9 - + �9 �9 �9 �9 �9 �9 �9 �9 - �9 

(3 ,3 )  �9 �9 �9 �9 �9 �9 �9 �9 �9 �9 �9 �9 �9 �9 �9 + 

Fig. 7. The matrix (e[ ,  e;] S( l~ 'Sp)Jel ,  e 2 )  , where S(~) represents the right spin for i =  l and 
the left spin for i =  2. Dots stand for zeros, and • denotes _+ 1/4. Note that the dimer singlet 
state e = 0  is taken to be + (1",[ - +i")/x/~. 

Before ending the discussion of  [ ~ ] ,  there is one detail worth men- 
tioning. Since the lookup  of  matrix elements <el, e2tS(1)'S(2)le'l,e'2) 
takes place C(nD)X (number  of terms in ar t6 times, it is best to do it 
"in-line" and not  as a subroutine call. This was discovered when doing 
early calculations for S =  1 chains; a timing analysis showed that an 
embarrassingly large fraction of the total computa t ional  effort was devoted 
to overhead on the subroutine call which gave the matrix elements. 

The matrix [X2]  is rather simpler to construct.  Like [ J ~ ] ,  it is sparse 
and should be stored in an appropr ia te  form. However,  [Jr2] does not  
couple dimers together, since its terms are + S ~ ,  where k runs over the 
spins in the graph and the sign depends on the sublattice upon  which the 
spin sits. If  these terms are grouped into pairs corresponding to the dimers 
of  ago, then the terms within each pair are opposite in sign, and hence a f  2 
conserves S z on each dimer. The only nonzero  matrix elements 
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(el S~ - S~ [e'> are for (e, e') = (1, 0) or (0, 1): the staggered field turns the 
singlet into the S z = 0 triplet state, up to a numerical factor, and vice versa, 
and it annihilates the other triplet states. Thus, the maximum number of 
nonzero elements in a row of [Jr2] is riD: it is yet more sparse than [ ~ ] .  

After ~0, ~ ,  and ~2 have been put in the appropriate form, the 
recursion relations (2.22) and (2.23) may be applied to yield the energy and 
eigenvector series. With the vectors ]~u(;.0)> and the four 16 x 16 matrices 
(el,e21S{2).S(z/[e'l,e~> in hand, the evaluation of matrix elements 
needed for calculating the series for ~to and #2 (or any desired spin-spin 
correlation function) can proceed directly. 

Once all the series for the desired properties have been evaluated for 
a given graph, all that remains is subgraph subtraction (2.5) to obtain the 
weights, and, finally, the addition of the weights, multiplied by appropriate 
lattice constants, to give the series. 

There are several checks on the calculation which can alert one to 
possible errors in the computer programs. As mentioned in Section 2, for 
any weight W[~3(G ) one knows that the low-order terms (up to order 
2p-1, if G has p links) must be identically zero. This provides a fairly 
robust check that graphs have not been omitted, except perhaps in the 
highest order of the calculation, and that subtle errors, such as exceeding 
declared array dimensions, have not tainted the calculations. With double- 
precision arithmetic, we found that values which should have been identi- 
cally zero were typically on the order of 10 -13 or smaller. In addition, the 
results at lowest nontrivial order can be obtained by hand with modest 
effort; gross mistakes in the code can be detected in this way. 

3.3. "For tu i tous  Cancel lat ions" for Chains 

In the case of D-expansions for chains, one discovers that the weight 
for Eg for the graph containing p links vanishes not only to 0(2 p- 1), but 
all the way to O(22p-1). This empirical observation allows for an expansion 
of Eg to O(22p+1) using only the graphs needed for the expansions to 
0(2 p) of /A0, ]A2, etc., and explains why, in Table I, the expansions for Eg 
in S =  1/2 and 1 chains have been obtained to much higher order than 
those for other quantities. At present, there is no rigorous proof that this 
cancellation in the Eg weights holds for all p, although the calculations 
establish it as a numerical fact up to p = 7 for S = 1/2. It is also valid for 
S = 1 chains with any value of the biquadratic coupling, where the calcula- 
tions extend up to p = 5 [except for p = 1, for which the O().) term is non- 
zero when fl :~0]; presumably the cancellation holds for all S. For S =  1/2, 
it also holds when next-neighbor interactions are included in ~11. 

The dimerization, defined in Section 4.2, exhibits a cancellation in the 
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same cases as the energy, but only to order 2 2p-2. Hence the expansion 
may be calculated to O(2 2p) using only the graphs with up to p links. 

The susceptibility weight for S =  1/2 chains exhibits no unexpected 
cancellations. However, the coefficient of 2 p in the weight for the p-link 
graph seems to be simply 2-P. The reason for this is not known, but it has 
been exploited to obtain the expansion of Z to 0(2 7) using only graphs 
with up to six links. 

Although there is currently no general proof for the vanishing of terms 
to 0(2  2p- 1) for the energy weights in spin chains, there is a reasonable 
argument for it which can be made rigorous by an exhaustive analysis, at 
least for S =  1/2 and small p. The argument goes as follows: In order to 
obtain a contribution to the energy weight at, say, O()~"), one needs to find 
a term in ( ~ ) "  which has a nonzero expectation in the unperturbed 
ground state and which, in addition, contains every term in ~ as a factor 
at least once. We conjecture that any such terms in ( ~ ) ~  will actually con- 
tain every term in ~ as a factor at least twice; the claim that the lowest- 
order nonzero term in the energy weight is at least of order 2 2p in a p-link 
graph follows directly. 

Why is such a conjecture plausible? Consider the state of a dimer at 
one end of a chain. Its state can only be changed by the one term in 
which connects it with the rest of the dimers in the chain. One sees from 
the matrix @1, e2J S~1~'S~2! le~, e~) in Fig. 7 that one application of the 
perturbation always takes a singlet state of the dimer into a triplet state; 
thus, the term of ~1 which acts on the end dimer must appear at least 
twice, if it is to appear at all, in order to obtain a nonzero expectation 
value for a term in (~)n .  Our conjecture is thus trivially established for 
p = 1, 2, where every link is attached to a dimer at one end of the chain. 
For larger p, one can systematically examine all terms of (~4~) n which 
could conceivably contribute to the energy weight. We do not have an 
inductive argument, which one might expect should exist. 

For higher-spin chains the cancellation in energy weights may 
presumably be argued along similar lines. However, the cancellation in the 
dimerization for chains and the simple behavior of the leading term in the 
Z weights for S =  1/2 chains remain entirely unaccounted for. We leave 
these as open problems. It might also be possible to find an elegant proof 
of the cancellation in energy weights, since the result seems to have a 
topological character, and appears to hold even for nonlinear graphs which 
do not contain loops. 
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4. OTHER MODELS 

The calculational procedure laid out in the preceding section can be 
applied rather widely, with only relatively minor modifications in many 
cases. In the following subsections, the necessary modifications are 
discussed first for various D-expansions; specifically for S = 1 systems, and 
for models which include biquadratic and/or anisotropic interactions. In all 
of these cases, the graph enumeration problem is identical to that for the 
simple D-expansions of Section 3 and only the construction of the 
Hamiltonians needs to be addressed. 

Next, the implementation of I-expansions is described. The required 
modifications are much more extensive than in the cases mentioned above; 
in particular, the character of the connected graphs for I-expansions is 
rather different from the character of those for D-expansions. Furthermore, 
because of a trivial local symmetry, many I-expansions turn out be expan- 
sions in A 2 rather than A. For such quantities, the lowest order in the 
weight which has a nonzero coefficient can be determined by inspection; 
since most graphs contribute first in much higher order than one might 
naively expect, one can identify by hand the graphs with the most terms of 

which need to be included in the calculation. The weight calculations 
for I-expansions also show a new feature: the number of basis vectors 
which must be kept turns out to be even less than the number of 
eigenstates of ~o with StZot = 0. 

The final subsection briefly mentions several further applications of the 
series expansion method. Some of them have been carried out, and are 
described in more detail elsewhere; others remain open for exploratory 
calculations. 

4.1. Spin-1 Systems 

The general scheme of the weight calculations for D-expansions in 
S = 1 systems is identical to that for S = 1/2 systems. Most of the required 
changes are obvious: the ei of Section 3.2 now run from 0 to 8 rather than 
0 to 3; the unperturbed energies for dimers are changed, etc. The few 
differences which deserve special mention are described below. 

The most important difference between S =  1 and S=  1/2 systems, 
from the viewpoint of practical calculations, is in the number of states with 
which one must work in the weight calculations. The number of states in 
the Sto t = 0 basis for a graph with n o dimers is given by 

~D (2nD)! (4.1) 
CI(nD)'= Z [2(nD_m)][ m! m! 

m ~ O  
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which, for nD= 1,..., 6 equals 3, 19, 141, 1107, 8953, and 73789. These 
should be compared with the C(nD), which equal 2, 6, 20, 70, 252, and 924; 
clearly calculations for S =  l systems require much more computer power 
than the analogous calculations for S =  1/2 systems. Indeed, for reasons of 
storage alone it proved necessary to use a supercomputer (IBM 3090 with 
extended addressing capability) to calculate weights for the linear graph 
with five links. 

The matrices @1, e2l 5(1) '8(2) [e ' l ,  e ; )  used to construct [Jf~lJ and 
evaluate spin-spin correlations must also be built anew for S = 1 systems. 
They are now 81 x 81 matrices, and they are difficult to write down without 
the aid of a computer. By hand, one can readily evaluate the matrix 
elements of S(1) " S(2) in the spin representation, 

IS .  S] s= ( SZl,lal,rSZ2,lSZ2,rl S(l)" 8(2 ) ISZlt, lZl',rSZ2t, lSZ2t, r ) 

(with l and r denoting left and right sites in a dimer). One can also write 
down the 9 x 9 orthonormal matrix Ui= (Si~,~S~rl ei) which converts the 
state of a single dimer from the dimer to spin representation; its elements 
are the familiar Clebsch Gordon coefficients for the addition of two 
spin-1 states. The 81 x81 change-of-representation matrix for a pair 
of dimers U12 = U 1 @ U 2 may then be constructed by machine, and 
the (e~,e2rS(1)'S(21le'~,e'2) obtained by matrix multiplication as 

Finally, the staggered-field matrix elements @11 ST-S~ le'l) used to 
construct ~ must be determined. This task can be done easily enough by 
hand. 

4.2. Biquadrat ic  interact ions 

In performing series expansions for models with several different types 
of interactions, one often has some freedom in the allocation of terms 
between -~o and ~ .  For the example at hand, if one wishes to study the 
S = 1 chains with 

~=Y~s,.sz+~-t~(si. s , . l )  2 (4.2) 

by D-expansions, then either all the biquadratic terms could be put into ~1 
or the biquadratic terms associated with the dimers of ~0 could be put into 
~0 (along with the appropriate S" S terms) and the remainder put into ~'~. 
It is evident from Eq. (1.1) that we have chosen the latter alternative for 
our calculations. In the discussion below, only S =  l systems will be con- 
sidered, since for S =  1/2 there is no independent biquadratic term 

822/59/5-6-3 



1124 Gelfand et al. 

[because ($1" 82) 2= 3/16-�89 $2], and we have not done any calcula- 
tions with S > 1. 

The eigenvalues of -~o for a single dimer are - 2 -  4fi for the singlet, 
- 1 -  fl for the triplet, and 1 -  fl for the quintuplet. Thus, when fl ~< -1/3  
the ground state of a single dimer is no longer nondegenerate and our 
method can no longer be applied. Note that if all the biquadratic terms 
were put into ~1, this problem would not arise for any value of ft. 
Fortunately, the portion of the phase diagram with fl > -1/3 is particularly 
interesting: recall Fig. 2. 

In the construction of [ ~ ]  only one new feature arises. The matrix 
elements @1, e21 (S~1)" S(2~) 2 le'l, e~) must be stored as an 81 x 81 matrix, 
as well as the S(1)" S(2~ matrix. 

For S =  1 chains with biquadratic interactions, it turns out that 
"dimerization" is an interesting quantity to study. If we define 

D =  ( $ 1 " $ 2 ) -  (8o"81)  (4.3) 

for the infinite chain, then D = 2 for 2 = 0 if we take the dimers of ~o as 
having the even spins on their left sides. It is readily shown that D has a 
connected cluster expansion, using the usual connected graphs for 
D-expansions, if the property 

/? = 2 ( - ) i +  1(8 i . 8i+1) (4.4) 

is taken as its appropriate extensive version, to be calculated for each 
graph. 

One might expect that as the imposed dimerization is removed, that is, 
,~ ~ 1, then D should approach 0. However, dimerization can be a spon- 
taneously broken symmetry; that is what happens for S =  1 chains with 
/~ > 1. Thus, with respect to D, the D-expansions are analogous to expan- 
sions about infinite magnetic field for classical Ising ferromagnets. In both 
cases, as the explicit symmetry-breaking term in J f  is removed, one can 
look for a residual, spontaneous order. Furthermore, one knows that if 
D > 0 as 2 ---, 1 - ,  then by symmetry there is a first-order transition at 2 = 1, 
since as 2 --, 1 + the ground state must have the opposite value of D. 

4.3. Anisotropic Interact ions 

If anisotropic interactions 

(Si, Sj)~ = S~ S j + zl(Sx S~ + SY S f )  (4.5) 

are to be used, it is clear that the two-dimer matrix elements of (8(1), S(2~)~ 
are needed. But, in addition, the unperturbed eigenstates depend on A; the 



Expansions for Quantum Many-Body Systems 1125 

ground state of ~o on a dimer is no longer a singlet (except when A = 1 ), 
since that is not even an eigenstate of total spin. Fortunately, Sto t remains 
a good quantum number for all A, so the number of basis states involved 
in the weight calculations is the same as in the case of isotropic couplings. 

A prerequisite for any weight calculation, then, is to calculate exact 
eigenvalues and eigenvectors (in the spin representation) for a single dimer 
subject to ~o. (It is worth noting that the ground state is nondegenerate 
for all A ~ 0.) Using that spectral information, which is just the transforma- 
tion matrix U of Section 4.1, the matrix @1, e2l (S(1), S(2))A le'l, e;> (with 
the ei identifying true, A-dependent dimer eigenstates) may be readily 
calculated by the method described before. The important point is that 
(Si, Sj)~ is no more difficult to express in the spin representation than 
Si.S:. 

Since the operator (Si, Sj)~ is needed to create [ ~ ] ,  it is natural to 
calculate the series expansions for moments of the anisotropic AF equal- 
time structure factor 

/ J  (4.6) = ~ < (So, s ,b  > i"OiT~Oi 
i 

It is certainly possible to calculate the isotropic quantities kto, #2 as well. 
However, the only model for which D-expansions with anisotropic 
coupling have been calculated is the S =  1 chain without any biquadratic 
coupling. In that case only ~tg, #~, and )~=z were calculated. (The last quan- 
tity describes the response of the ground-state energy to a staggered field 
along the z direction in spin space, and is exactly what was meant 
previously by )~--though in fact the response in an isotropically coupled 
system will not depend on the orientation of the field. In an anisotropically 
coupled system, the quantities Zxx= X yy are distinct from X ==, but cannot be 
easily calculated, since a staggered field along the x or y direction does not 
commute with Stot. ) It seemed that expansions for the other quantities 
would give no important additional information: see especially the discus- 
sion in ref. 15 pertaining to the D-expansions for A > l. 

4.4. Ising Expansions 

The connected graphs for I-expansions look rather different than those 
for D-expansions. Recall that all nearest-neighbor pairs of spins are 
coupled by terms of ~o- Thus, using points and solid and wavy lines to 
denote spins and terms of ~o and .gf~, the simplest graph in 1D, which con- 
tains just one term of 24~, is shown in Fig. 8a. Two terms of ~ constitute 
a connected cluster if they share either a spin, as in Fig. 8b, or if a term of 
R 0 joins them, as in Fig. 8c; it should be clear that in neither of these cases 
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(a) 

(b) 

Fig. 8. 

(c) 

Low-order graphs for the I-expansion in one dimension. 

is a decomposition of the cluster Hamiltonian along the lines of (2.8) 
possible. 

The number of connected graphs in 1D with m links is greater than 
2 m 2, as can be seen by a quick argument: the m - 1  gaps between the 
links can be of either length 0 or 1, which gives 2"  1 connected clusters. 
However, not all of these are geometrically distinct, since some may be 
related, in pairs, by inversion symmetry. Ignoring the possibility that a 
cluster may be mapped onto itself under inversion gives the lower bound 
of 2 m 2 graphs. (The exact number is 2m-2+  2 Em/21 1, with [ - ]  denoting 
the greatest integer function.) Even in 1D the construction of connected 
graphs for I-expansions is not completely trivial. It is evident that the 
number of graphs grows much more rapidly with the number of links than 
for D-expansions; the difference is even more marked on the square lattice, 
where each link has, in effect, 22 possible "neighbors" to which it could be 
connected either directly or through a bond of ~o- 

The number of connected graphs increases so rapidly with the number 
of links that one should immediately wonder how the I-expansions listed in 
Table I---~xpansions to order A t0 on the square lattice, and to order A 22 in 
1D--could possibly be obtained. Indeed, it is only possible because for 
certain quantities, among them Eg, M t, and #;z, the lowest nonzero term 
in the weight for most m-link graphs appears not at o(Am), but rather at 
O(A2m). Few m-link graphs contribute to those weights at O(Am): on the 
square lattice, just one graph for m = 4, none for m = 5, one for m = 6, and 
so on. In 1D, all m-link graphs contribute to those weights first at O(A2m). 

To establish these claims, we begin with the full multinomial expan- 
sion (2.3). Each term in ~ should be thought of as carrying its own coef- 



Expansions for Quantum Many-Body Systems 1127 

ficient Aij. The aim now is to show that Eg, M *, and Iz;-" are even functions 
of any Aij which, roughly speaking, is not associated with a closed loop o f  
links. 

Consider the following local gauge transformation of the spin system: 
given a site i, rotate S, by n radians about the z axis, and, to compensate, 
change the signs of all the X Y  coupling J~Y (equivalently, Aij) affiliated 
with that site. This transformation leaves Eu, M t, and/~z unchanged, since 
it does not alter the z component of the spin; henceforth, these properties 
will be called gauge-invariant. Applying the transformation to all the spins 
on one sublattice of an infinite bipartite lattice reverses the signs of all the 
X Y  couplings. Thus, only even powers of A can appear in the I-expansions 
for gauge-invariant properties; the same is not true for xy /~o, for instance. 

More information is gained by applying the transformation more 
selectively, to particular spins in a finite connected graph. Rather than 
deriving a general rule for determining the lowest-order nonzero term in 
the gauge-invariant weights, several illustrative examples will be worked 
through, and then a procedure for identifying all relevant graphs will be 
sketched. 

Consider first the effect of applying the gauge transformation to a 
single spin in a graph, say, the spin labeled 1 in Fig. 9a. This changes the 
sign of only one term of ~ ,  namely, A la; hence, the gauge-invariant 
weights are even in A 12. By the same simple argument, the weights are also 
even in '423, A24, "456, and A89 as well. To show that the weights are even 
in "467 (or  zJ78), the gauge transform can be applied to spins 6 and 5 (the 
first transformation sending As6 and "467 to their opposites, and the second 
sending As6 back to its original value), or, just as well, to spins 7, 8, and 
9. In graph-theoretic terms, if one views the spins as vertices and the 
links--but not the terms of ~o--as  edges, then the weights are even 
functions of any A o for which the corresponding edge is connected to any 
vertex of valence 1 through vertices of valence 2. In a 1D graph, all the 
links satisfy this criterion, and every m-link graph contributes first in order 
A 2m to gauge-invariant weights. In higher dimensions, the same is true for 
any graph consisting solely of trees of links. 

Graphs with loops of links require more effort to determine the lowest 
order to contribution to the gauge-invariant weights. For the graph in 
Fig. 9b, it is clear that the weights cannot be shown to be even in any 
particular A~ by the strategy that succeeds for tree graphs. The lowest 
order term in its gauge-invariant weights is O(z/4), since no local gauge 
symmetry forbids the term Zl12 J 23 "4 34 "414 . 

However, it is not simply the case that every A• which is part of a 
closed loop can contribute in first order to the weights. A simple 
counterexample is provided by the 7-1ink graph in Fig. 9c. Although it 
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contains 7 links, it could not possibly contain an O(A 7) term in any gauge- 
invariant weight: those weights are even in A, since the signs of all the A~j 
can be reversed by applying the gauge transform to spins 1, 3, and 5. 
Applying the transform to spin 5 alone reveals that the weights are even in 
the product ZI45Z~56zJ25 ; the same is true for the product A12A23A25. There- 
fore, the lowest order term in the gauge-invariant weights must be of the 
f o r m  A12A23A14A36A45A56(A25) 2 = O ( A 8 ) .  

3 

(o) 

11_ 22 12-I 
: 4 T ' - V T 3  : 

(b) 

4T -ST --dT 

5 

Q Q �9 

(c) 
Fig. 9. Illustrative graphs for the I-expansion on the square lattice. Labeled spins are referred 

to in the text. 
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The graphs on the square lattice contributing first to O(A 4) may now 
be quickly written down: they include only the six 2-1ink graphs in Fig. 10a, 
and the 4-1ink graph in Fig. 9b. The O(A 6) graphs are constructed by 
grafting one additional link onto each of the O(A 4) graphs, and there is 
also one 6-1ink graph, shown in Fig. 10b. At O(A8), some of the graphs not 
obtained by grafting one link onto O(A 6) graphs are shown in Fig. 10C. 13 

13 There are two other graphs, not displayed, consisting of two four-link loops (as in Fig. 9b) 
connected by one and two bonds of ~0, respectively. 

~ A  -- ^ A v v  v v v 

-t 
(a) 

(b) 

(c) 

v . . . .  v v v - ~  . . . .  

Fig. 10. Graphs for I-expansion on the square lattice; see text for explanation. For clarity, 
spins coupled to the rest of the graph only via W o ("boundary" spins) are not drawn. 
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Notice that all of the graphs in Figs. 9b and 10bc which have m links and 
contribute to the gauge-invariant weights first at O(A m) contain only 
vertices of valence 2 and 4; the converse is also true, since this graph- 
theoretic condition means that the local gauge symmetry does not prohibit 
the lowest-order term in the weights from containing each Aij in the graph 
exactly once. 

The general strategy for identifying graphs which contribute at some 
specified order should now be evident. It is a combination of exhaustive 
enumeration, to create graphs with m +  1 links contributing at order 
A 2(p+l) from those with m links contributing at order A 2p, plus 
unsystematic construction of any other graphs which contribute at order 
z~Z(p+ 1). Although that unsystematic procedure risks missing graphs, there 
are sufficiently few which need to be found [-at least to O(AI~ that the 
risk has proven manageable. The alternative, a complete exhaustive 
enumeration of all 2 (p+  1)-link graphs, is totally impractical; it would 
yield many more graphs, most of which would contribute nothing to the 
gauge-invariant weights up to the desired order. 

The set of basis states which must be kept in the weight calculations 
for I-expansions is also different from the one used in D-expansions, that 
is, the StZot = 0 subspace. The salient feature of I-expansions in this context 
is that spin-exchange occurs only across the links in a graph. Thus, for the 
graph in Fig. 11, there are only 8, rather than (6)=20 states connected to 
the ground state by powers of ~ '  not only is S t o  t = 0 in each such state, 

z z z _ _  z z but also $1 + S~ : S 3 + S 4 - 8 5 --t- 8 6 = 0. More generally, S z is conserved 
within any subcluster of spins connected by links to each other, but only 
by bonds to other spins in the graph. It proved especially important to take 
advantage of these additional "conservation laws" in expansions in 1D, 
where the graphs contained up to 11 links (see Table I). For the ll-link 
graph in which none of the links shares a spin, the number of elements in 

z - -  2 2  the Sto t - 0  space is (11)= 705,432; but the actual number of basis states is 
only 211 = 2048. 

4.5. Further Applications 

There are several directions in which the work reported in this paper, 
and summarized in Table I, could be extended. Below, some ideas are 
listed, roughly in order of decreasing degree of development. 

I -fi 3 4 5 6 

Fig. 11. An illustrative graph for the I-expansion. Labeled spins are referred to in the text. 
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One could try to calculate more properties of interest by means of the 
basic I- or D-expansions. In particular, from I-expansions Singh has 
recently obtained estimates of the transverse susceptibility and spin-wave 
stiffness (19'2~ and moments of the two-magnon Raman lineshape (21~ for the 
S =  1/2 square-lattice Heisenberg antiferromagnet. These quantities are 
directly measurable; the calculations have aided in the interpretation of 
experimental data related to magnetic properties of La2CuO4. Such 
calculations are possible because the 2D I-expansions are convergent all the 
way to the isotropic limit A =1. It makes little sense to construct 
D-expansions for quantities of experimental interest in square-lattice 
Heisenberg antiferromagnets, since the series can only be reliably 
extrapolated up to the critical point 2c < 1. 

Using a dimer model as ~0, one could put further-neighbor (as well as 
nearest-neighbor) interactions into ~f~. In one dimension, second-neighbor 
interactions can be treated using only the graphs which are present in the 
nearest-neighbor-only case, since second-neighbor spins lie on nearest- 
neighbor dimers. A few results for the 1D, S = 1 / 2  case have been 
reported. (341 Antiferromagnetic second-neighbor interactions tend to 
frustrate the spin system, which responds by either modulating (i.e., tending 
to order in structures with period greater than 2, perhaps even incommen- 
surately) or spontaneously dimerizing. Thus, to study these models 
properly one must calculate the dimerization D (just as for S =  1 chains 
with biquadratic interactions) and the full set of spin-spin correlation 
functions. 

On the square lattice, the influence of second (nearest-diagonal) and 
third (next-nearest axial) neighbor interactions is of special interest. Two 
theoretical approaches, namely expansions in 1IS (S, as usual, being the 
spin) (35)'14 and 1IN IN, being the one in SU(N), is ordinarily 2] (37t give 
quite different predictions for S =  1/2 Heisenberg models. The former 
favors a nondegenerate, translationally invariant ground state, while the 
latter indicates a fourfold degenerate, columnar-dimerized ground state. An 
investigation of these models by D-expansions yields results more 
consistent with the latter.(22~ 

Other Hamiltonians besides Ising and dimerized models could serve as 
the starting points for series expansions. The pure staggered field model 
Zl  ~0iS~ is a suitable ~o. An application which suggests itself is the study 
of the properties in the "Haldane phase" of S = 1 chains, which cannot be 
reached from either Ising or dimerized models without encountering a 
phase boundary (recall Fig. 2), but should be accessible from the pure 
staggered field model by taking ~ = --~o + Zi  Si" S~+ 1. Some preliminary 

14 Ref. 36 gives a variational calculation which gives similar results. 
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calculations have been performed, (38~ but the series do not appear 
sufficiently well behaved to be competitive with direct finite-size 
diagonalization. 

Another potential ~0, which is only suitable for integer-spin systems, 
is the pure single-spin anisotropy model ~i  (S~) 2. (If the spin were half- 
integer, then the ground state would be exponentially degenerate, with each 
S z allowed to take on the values _+ 1/2 independently.) There have already 
been finite-size studies of the phase diagram for S = 1 chains with single- 
spin anisotropy and anisotropic couplings(39); series calculations might 
provide a good check. No efforts have yet been made in this direction. 

Finally, we note that the series method is not limited to the study of 
quantum spin systems. In principle, fermions or bosons could be treated, so 
long as they are restricted to sit on lattice sites and their interactions are 
short range. We have undertaken a preliminary investigation of the 
Hubbard model. (38) It is not yet clear whether series expansions will yield 
any useful results for such models, but, given the difficulty of studying 
highly correlated fermions, more effort along these lines may be 
worthwhile. 

5. C O N C L U S I O N S  

We have described a general scheme for generating various series 
expansions for quantum spin systems at T = 0  and for several cases 
discussed the calculations in great detail. However, there are several 
matters which have been barely touched on, and which are addressed 
below: (1) Practical considerations, particularly the amount of computer 
time used in the calculations and the computer memory requirements, and 
(2) a comparison of series expansions with other numerical methods for 
studying similar problems. 

Compared with other numerical methods for calculating spectra and 
ground-state properties, series expansions are memory intensive. (More to 
the point, our programs have large memory requirements: others may be 
able to do better.) Suppose one intends to calculate weights for a single 
graph, for which there are L states in the basis out of N altogether, up to 
ruth order in ~1. Further suppose that the representation of each state, in 
terms of dimer or Sj eigenvalues, requires n integers, and that the 
maximum number of elements in a row of Yf is M. One needs to store N 
integers for the first lookup table described in Section 3.2 and nL for the 
second; L real (floating-point) numbers for ~o; L ( M  + 1) integers for ~]Pt) 
and L M  reals for ~va~). So far, this is no more storage than would be 
required for a finite-size calculation which failed to take advantage of sym- 
metry considerations to block-diagonalize the Hamiltonian matrix--but 
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the lack of symmetries in typical cluster Hamiltonians compared with the 
symmetries of systems subject to periodic boundary conditions accounts for 
most of the extra storage required by the series method compared with 
finite-size diagonalization. There are also further requirements. It takes mL 
reals to hold the perturbation series of eigenvectors, and this is only for one 
weight calculation: if there are K graphs, then for each property of interest 
one must hold the weights for each graph as m K  reals. If one wants to 
calculate all the spin-spin correlations, then the number of properties can 
be on the order of 100. 

Since L and N grow exponentially with the order of calculation, 
storage requirements limit the number of terms which can be obtained even 
for one-dimensional systems. Using a machine with 1 gigabyte of memory, 
such as the IBM 3090 on which some of our calculations were run, it seems 
difficult to calculate weights in D-expansions for the 11-1ink S = 1/2 graph 
or the 7-1ink S = 1 graph. 

Practical limits on CPU time have prevented us from attaining the 
highest order terms consistent with the memory requirements. The time 
required for the weight calculations for a single graph scales roughly with 
L (since that sets the number of lookups performed in calculating [ ~ ] ,  
and the number of multiplications in each matrix multiplication). The com- 
putation of weights in D-expansions for the 5-1ink S = 1 graph takes over 
1 hour of IBM 3090 time, even after vectorizing the code. Thus, the 6-1ink 
S =  1 graph seems unfeasible for the present generation of computers; in 
any event, it is not clear that one or two more terms in the series would 
be worth the substantial additional effort. None of the conclusions we have 
drawn from series expansions would be qualitatively altered if the calcula- 
tions had been done only to the order possible on a Sun 3/50: typically to 
only one order in 2 (or two in A) less than the figures listed in Table I. 

Regarding the relative merits of series expansions versus other 
numerical methods, especially exact diagonalization of small clusters, it is 
certainly not true that the series approach is superior to the others for all 
applications. Series cannot so easily be used to study finite-size corrections 
to the energy of a critical spin chain (to estimate its central charge(4~ 
Series seem generally less well suited than finite-size calculations to 
determining spectra and dispersion relations, although further develop- 
ments might change this. It is also clear that if the model of interest is not 
close to a trivial ~o- - in  that more than one continuous, or even one first- 
order, transition intervences between ~o and ~o + ~ - - t h e n  an informative 
series expansion will not be possible. 

Nonetheless, it has been our experience that there are circumstances in 
which series expansions are an excellent tool, which can complement well 
the capabilities of alternate numerical methods. An example worthy of 
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Fig. 12. The set of spins in the first quadrant which have a nonzero correlation with the spin 
at the origin, at order 4 6, for the D-expansion about the columnar -~o. 

special mention here is the study of quantum criticality in 2D, S = 1/2 
antiferromagnets by means of D-expansions, where it seems unlikely that 
exact diagonalization will ever be competitive with series. Starting, for 
example, with the columnar-dimer ~o on the square lattice, series were 
obtained to 0(26 ) in the remaining nearest-neighbor couplings. The set of 
correlations (So" SR) (folding all R into the first quadrant, by symmetry) 
which have a nonzero term at 0(26) or lower, and thus contribute to the 
#o and 1'2 series in Table V, are shown in Fig. 12. In order to account for 
all of these correlations exactly in a finite-size calculation, one would need 
to work with a 28 • 14 spin system, while the present practical limit for 
exact diagonalization is 32 S - 1 / 2  spins. ~41) In essence, the cluster method 
for series expansions breaks the big problem indicated schematically in 
Fig. 12 into many smaller, more tractable problems; the increase in the 
number of problems, by a factor ~ 2  l~ (the number of graphs), is more 
than made up in the reduction in the size of each, by a factor ~ 23oo (taking 
"size" to mean the dimensionality of the relevant vector space). 

We hope that by presenting our method for calculating series expan- 
sions in more detail than the typical reader might care to see, we have 
aided those few who might wish to do similar calculations themselves. To 
them, we add, good luck! 

APPENDIX.  TABULATED SERIES 

Some series are presented here, in the order in which they are listed in 
Table I. The terms are exact, modulo roundoff conventions for the least 
significant figure displayed. The various properties (Eg, etc.) have already 
been defined; see especially Sections 1 and 4. 



Expansions for Quantum Many-Body Systems 

Table Ill. Coefficients of A zn in the Ground-state 
Energy and Sublattice Magnetization Series, for the 

S = 1 / 2  I-Expansion in One Dimension 

n 4Eg 2M + 

0 - 1 1 
1 - 1 - 1 

2 0.25 -0.25 
3 0 -0.0625 
4 -0.015625 0.015625 
5 -0.0078125 0.046875 
6 -0.00195312 0.055664 
7 0.00048828 0.053955 
8 0.0010376 0.047791 
9 0.00085449 0.040176 

10 0.00051117 0.032555 
11 0.00022316 0.025569 
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T h e  n u m e r i c a l  fac tors  tha t  a c c o m p a n y  s o m e  of  the  p rope r t i e s  in the 

tab le  head ings ,  for  example ,  8Eg for  the  S = 1/2 D - e x p a n s i o n s ,  h a v e  sund ry  

or igins .  T o  r educe  the  l i k e l i h o o d  of  t y p o g r a p h i c a l  e r ro rs  in the tables,  the  

n u m b e r s  g iven  are  those  which  c o m e  d i rec t ly  ou t  o f  the  we igh t  c a l c u l a t i o n  

p r o g r a m s .  T h e  n u m e r i c a l  fac tors  then  a c c o u n t  for  such  th ings  as ove ra l l  

Table IV. Coef f ic ien ts  of  A" in the Energy, M o m e n t s  of  the 
AF Cor re la t ion  Funct ion,  and AF Susceptibility for the 

S=1/2 D-Expansion in One Dimension 

n 800Eg 4#0 4#2 Z 

0 -300 
1 0 

2 -37.5 
3 -9.375 
4 -2.5391 
5 - 1.4486 
6 -0.94198 
7 -0.57614 
8 -0.39028 
9 -0.28877 

10 -0.21763 
11 -0.16740 
t2 -0.13270 
~3 -0.10748 
14 -0.088373 
15 -0.073682 

6 3 1 
3 13.5 1 
1.5 21,75 0,875 
0,875 27.687 0.8125 
0.68880 32.605 0.77669 
0.56472 36.926 0.74436 
0.46579 40.819 0.71754 
0.40089 44.387 0.69609 
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factors in the lattice constants: for the 1D D-expansions, each graph has a 
lattice constant of 1/2, but instead L ( G ) =  1 was used in the calculations. 
It is possible that the numerical factors could be in error. Fortunately, 
those factors are often either irrelevant in the analysis of critical properties 
or can be checked against known results. The zeroth-order terms are 
calculated by hand and carry the same warning and reassurance. 

Most of the I-expansions for S = 1/2 systems appear elsewhere in the 
literature. For  the chain see Ref. 18, and for the square lattice see refs. 19 
and 20. The only series not given in those papers are for the ground-state 
energy and staggered magnetization in one dimension; these are presented 
in Table III. Note that these series have been known exactly for some 
time, (42) and that the results from the numerical calculations agree with 
those values. 

The D-expansions for the S = 1/2 chain, which have been alluded to in 
ref. 16, are given in Table IV. The analogous expansions in two dimensions, 
for the three cases described by Fig. 1, are given in Table V. Some of these 
have already appeared in ref. 16, but all are displayed here for ease of 
comparison. 

None of the expansions for S = 1 chains have been published pre- 
viously, though a report of their analysis has been given in ref. 17. Table VI 
presents I-expansions for selected values of 2 at/3 = 0. Table VII gives the 
D-expansions for/? = 0 with three values of A, corresponding to easy-axis, 
isotropic, and easy-plane couplings. Finally, Table VIII gives the 
D-expansions at A = 1 for /~ = 1 and /3 = 50. The expansions have been 
obtained for many more choices of/~ and 2 (or/~ and A) than are presented 
in the tables: only a representative sample has been displayed, and the rest 
are available upon request. 
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